
www.hdfgroup.org

The HDF Group

Parallel HDF5

August 12, 2014 Extreme Scale Computing PHDF5

Quincey Koziol
Director of Core Software & HPC

The HDF Group

www.hdfgroup.org

Advantage of Parallel HDF5

•  Recent success story
•  Trillion particle simulation on hopper @ NERSC
•  120,000 cores
•  30TB file
•  23GB/sec average speed with 35GB/sec peaks

(out of 40GB/sec max for system)
•  Parallel HDF5 rocks! (when used properly J)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Outline

•  Overview of Parallel HDF5 design
•  Parallel Environment Requirements
•  PHDF5 Programming Model
•  Examples
•  Performance Analysis
•  Parallel Tools
•  Upcoming features of HDF5 (if time

permits)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

MPI-I/O VS. HDF5

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

MPI-IO vs. HDF5

•  MPI-IO is an Input/Output API
•  It treats the data file as a “linear byte

stream” and each MPI application needs
to provide its own file view and data
representations to interpret those bytes

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

MPI-IO vs. HDF5

•  All data stored are machine dependent
except the “external32” representation

•  External32 is defined in Big Endianness
•  Little-endian machines have to do the data

conversion in both read or write operations
•  64-bit sized data types may lose

information

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

MPI-IO vs. HDF5

•  HDF5 is data management software
•  It stores data and metadata according

to the HDF5 data format definition
•  HDF5 file is self-describing

•  Each machine can store the data in its own
native representation for efficient I/O
without loss of data precision

•  Any necessary data representation
conversion is done by the HDF5 library
automatically

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

OVERVIEW OF PARALLEL
HDF5 DESIGN

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

•  PHDF5 should allow multiple processes to
perform I/O to an HDF5 file at the same
time
•  Single file image to all processes
•  Compare with one file per process design:

•  Expensive post processing
• Not usable by different number of processes
•  Too many files produced for file system

•  PHDF5 should use a standard parallel I/O
interface

•  Must be portable to different platforms

PHDF5 Requirements

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 requirements

•  Support Message Passing Interface
(MPI) programming

•  PHDF5 files compatible with serial
HDF5 files
• Shareable between different serial or

parallel platforms

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Parallel environment requirements

•  MPI with MPI-IO
•  MPICH, OpenMPI w/ROMIO
•  Vendor’s MPI-IO

•  Parallel file system
•  IBM GPFS
•  Lustre
•  PVFS

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 implementation layers

HDF5 Application

Compute node Compute node Compute node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Switch network + I/O servers

Disk architecture and layout of data on disk
August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 CONSISTENCY
SEMANTICS

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Consistency Semantics

•  Consistency semantics: Rules that define the
outcome of multiple, possibly concurrent,
accesses to an object or data structure by one
or more processes in a computer system.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 Consistency Semantics

•  PHDF5 library defines a set of consistency
semantics to let users know what to expect
when processes access data managed by the
library.
•  When the changes a process makes are

actually visible to itself (if it tries to read back
that data) or to other processes that access the
same file with independent or collective I/O
operations

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

HDF5 MPI-I/O consistency semantics

•  Same as MPI-I/O semantics

•  Default MPI-I/O semantics doesn’t
guarantee atomicity or sequence of calls!

•  Problems may occur (although we haven’t
seen any) when writing/reading HDF5
metadata or raw data

Process 0 Process 1
MPI_File_write_at()
MPI_Barrier() MPI_Barrier()

MPI_File_read_at()

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

HDF5 MPI-I/O consistency semantics

•  MPI I/O provides atomicity and sync-barrier-
sync features to address the issue

•  PHDF5 follows MPI I/O
•  H5Fset_mpio_atomicity function to turn on

MPI atomicity
•  H5Fsync function to transfer written data to

storage device (in implementation now)
•  Alternatively: We are currently working on

reimplementation of metadata caching for
PHDF5 (using a metadata server)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

HDF5 MPI-I/O consistency semantics

•  For more information see “Enabling a strict
consistency semantics model in parallel
HDF5” linked from H5Fset_mpi_atomicity
RM page1

1 http://www.hdfgroup.org/HDF5/doc/RM/Advanced/
PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

HDF5 PARALLEL
PROGRAMMING MODEL

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

How to compile PHDF5 applications

•  h5pcc – HDF5 C compiler command
•  Similar to mpicc

•  h5pfc – HDF5 F90 compiler command
•  Similar to mpif90

•  To compile:
•  % h5pcc h5prog.c
•  % h5pfc h5prog.f90

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Programming restrictions

•  PHDF5 opens a parallel file with an MPI
communicator
•  Returns a file handle
•  Future access to the file via the file handle
•  All processes must participate in collective

PHDF5 APIs
•  Different files can be opened via different

communicators

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Collective HDF5 calls

•  All HDF5 APIs that modify structural
metadata are collective!
•  File operations
-  H5Fcreate,	 H5Fopen,	 H5Fclose,	 etc	

•  Object creation
- 	 H5Dcreate,	 H5Dclose,	 etc	

•  Object structure modification (e.g., dataset
extent modification)
-  H5Dset_extent,	 etc	

•  http://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Other HDF5 calls

•  Array data transfer can be collective or
independent
- Dataset operations: H5Dwrite,	 H5Dread	

•  Collectiveness is indicated by function
parameters, not by function names as in MPI API

	

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

What does PHDF5 support ?

•  After a file is opened by the processes of a
communicator
•  All parts of file are accessible by all processes
•  All objects in the file are accessible by all

processes
•  Multiple processes may write to the same data

array
•  Each process may write to individual data array

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 API languages

•  C and F90, 2003 language interfaces
•  Most platforms with MPI-IO supported. e.g.,

•  IBM AIX
•  Linux clusters
•  Cray XT

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Programming model

•  HDF5 uses access template object
(property list) to control the file access
mechanism

•  General model to access HDF5 file in
parallel:
- Set up MPI-IO access template (file access

property list)
- Open File
- Access Data
- Close File

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

MY FIRST PARALLEL HDF5
PROGRAM

Moving your sequential application to the HDF5 parallel world

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Example of PHDF5 C program

Parallel HDF5 program has extra calls
	

MPI_Init(&argc, &argv);

1.   fapl_id = H5Pcreate(H5P_FILE_ACCESS);
2.   H5Pset_fapl_mpio(fapl_id, comm, info);
3.   file_id = H5Fcreate(FNAME,…, fapl_id);
4.   space_id = H5Screate_simple(…);
5.   dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT,

space_id,…);
6.   xf_id = H5Pcreate(H5P_DATASET_XFER);
7.   H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
8.   status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id…);

MPI_Finalize();
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

EXAMPLE
Writing patterns

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Parallel HDF5 tutorial examples

•  For simple examples how to write different
data patterns see

 http://www.hdfgroup.org/HDF5/Tutor/parallel.html

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Programming model

•  Each process defines memory and file
hyperslabs using H5Sselect_hyperslab	

•  Each process executes a write/read call using
hyperslabs defined, which can be either
collective or independent

•  The hyperslab parameters define the portion of
the dataset to write to
- Contiguous hyperslab
- Regularly spaced data (column or row)
- Pattern
- Blocks

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Four processes writing by rows

HDF5	 "SDS_row.h5"	 {	
GROUP	 "/"	 {	
	 	 	 DATASET	 "IntArray"	 {	
	 	 	 	 	 	 DATATYPE	 	 H5T_STD_I32BE	 	 	
	 	 	 	 	 	 DATASPACE	 	 SIMPLE	 {	 (8,	 5)	 /	 (8,	 5)	 }	 	
	 	 	 	 	 	 DATA	 {	
	 	 	 	 	 	 	 	 	 10,	 10,	 10,	 10,	 10,	
	 	 	 	 	 	 	 	 	 10,	 10,	 10,	 10,	 10,	
	 	 	 	 	 	 	 	 	 11,	 11,	 11,	 11,	 11,	
	 	 	 	 	 	 	 	 	 11,	 11,	 11,	 11,	 11,	
	 	 	 	 	 	 	 	 	 12,	 12,	 12,	 12,	 12,	
	 	 	 	 	 	 	 	 	 12,	 12,	 12,	 12,	 12,	
	 	 	 	 	 	 	 	 	 13,	 13,	 13,	 13,	 13,	
	 	 	 	 	 	 	 	 	 13,	 13,	 13,	 13,	 13	
	 	 	 	 	 	

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Two processes writing by columns

HDF5	 "SDS_col.h5"	 {	
GROUP	 "/"	 {	
	 	 	 DATASET	 "IntArray"	 {	
	 	 	 	 	 	 DATATYPE	 	 H5T_STD_I32BE	 	 	
	 	 	 	 	 	 DATASPACE	 	 SIMPLE	 {	 (8,	 6)	 /	 (8,	 6)	 }	 	
	 	 	 	 	 	 DATA	 {	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200,	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200,	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200,	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200,	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200,	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200,	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200,	
	 	 	 	 	 	 	 	 	 1,	 2,	 10,	 20,	 100,	 200	
	 	 	 	 	 	 	
	 	 	 	 	
	

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Four processes writing by pattern

HDF5	 "SDS_pat.h5"	 {	
GROUP	 "/"	 {	
	 	 	 DATASET	 "IntArray"	 {	
	 	 	 	 	 	 DATATYPE	 	 H5T_STD_I32BE	 	 	
	 	 	 	 	 	 DATASPACE	 	 SIMPLE	 {	 (8,	 4)	 /	 (8,	 4)	 }	 	
	 	 	 	 	 	 DATA	 {	
	 	 	 	 	 	 	 	 	 1,	 3,	 1,	 3,	
	 	 	 	 	 	 	 	 	 2,	 4,	 2,	 4,	
	 	 	 	 	 	 	 	 	 1,	 3,	 1,	 3,	
	 	 	 	 	 	 	 	 	 2,	 4,	 2,	 4,	
	 	 	 	 	 	 	 	 	 1,	 3,	 1,	 3,	
	 	 	 	 	 	 	 	 	 2,	 4,	 2,	 4,	
	 	 	 	 	 	 	 	 	 1,	 3,	 1,	 3,	
	 	 	 	 	 	 	 	 	 2,	 4,	 2,	 4	
	 	 	 	 	 	
	 	 August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Four processes writing by blocks

HDF5	 "SDS_blk.h5"	 {	
GROUP	 "/"	 {	
	 	 	 DATASET	 "IntArray"	 {	
	 	 	 	 	 	 DATATYPE	 	 H5T_STD_I32BE	 	 	
	 	 	 	 	 	 DATASPACE	 	 SIMPLE	 {	 (8,	 4)	 /	 (8,	 4)	 }	 	
	 	 	 	 	 	 DATA	 {	
	 	 	 	 	 	 	 	 	 1,	 1,	 2,	 2,	
	 	 	 	 	 	 	 	 	 1,	 1,	 2,	 2,	
	 	 	 	 	 	 	 	 	 1,	 1,	 2,	 2,	
	 	 	 	 	 	 	 	 	 1,	 1,	 2,	 2,	
	 	 	 	 	 	 	 	 	 3,	 3,	 4,	 4,	
	 	 	 	 	 	 	 	 	 3,	 3,	 4,	 4,	
	 	 	 	 	 	 	 	 	 3,	 3,	 4,	 4,	
	 	 	 	 	 	 	 	 	 3,	 3,	 4,	 4	
	 	 	 	 	 	

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Complex data patterns

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

8

16

24

32

40

48

56

64

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

8

16

24

32

40

48

56

64

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

8

16

24

32

40

48

56

64

HDF5 doesn’t have restrictions on data patterns and data balance

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Examples of irregular selection

•  Internally, the HDF5 library creates an MPI
datatype for each lower dimension in the
selection and then combines those types into
one giant structured MPI datatype

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PERFORMANCE ANALYSIS

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Performance analysis

•  Some common causes of poor performance
•  Possible solutions

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

My PHDF5 application I/O is slow

• Raw I/O data sizes
•  Independent vs. Collective I/O
“Tuning HDF5 for Lustre File Systems” by
Howison, Koziol, Knaak, Mainzer, and
Shalf

v  Chunking and hyperslab selection
v  HDF5 metadata cache
v  Specific I/O system hints

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

INDEPENDENT VS.
COLLECTIVE RAW DATA I/O

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Collective vs. independent calls

•  MPI definition of collective calls:
•  All processes of the communicator must participate

in calls in the right order. E.g.,
•  Process1 Process2
•  call A(); call B(); call A(); call B(); **right**
•  call A(); call B(); call B(); call A(); **wrong**

•  Independent means not collective J
•  Collective is not necessarily synchronous, nor

must require communication

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Independent vs. collective access

•  User reported
independent data
transfer mode was
much slower than
the collective data
transfer mode

•  Data array was tall
and thin: 230,000
rows by 6 columns

:
:
:

230,000 rows
:
:
:

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Debug Slow Parallel I/O Speed(1)

•  Writing to one dataset
- Using 4 processes == 4 columns
- datatype is 8-byte doubles
- 4 processes, 1000 rows == 4x1000x8 = 32,000

bytes
•  % mpirun -np 4 ./a.out 1000
- Execution time: 1.783798 s.

•  % mpirun -np 4 ./a.out 2000
- Execution time: 3.838858 s.

•  Difference of 2 seconds for 1000 more rows =
32,000 bytes.

•  Speed of 16KB/sec!!! Way too slow.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Debug slow parallel I/O speed(2)

•  Build a version of PHDF5 with
•  ./configure --enable-debug --enable-parallel …
•  This allows the tracing of MPIO I/O calls in the

HDF5 library.
•  E.g., to trace

•  MPI_File_read_xx and MPI_File_write_xx calls
•  % setenv H5FD_mpio_Debug “rw”

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Debug slow parallel I/O speed(3)

% setenv H5FD_mpio_Debug ’rw’
% mpirun -np 4 ./a.out 1000 # Indep.; contiguous.
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=2056 size_i=8
in H5FD_mpio_write mpi_off=2048 size_i=8
in H5FD_mpio_write mpi_off=2072 size_i=8
in H5FD_mpio_write mpi_off=2064 size_i=8
in H5FD_mpio_write mpi_off=2088 size_i=8
in H5FD_mpio_write mpi_off=2080 size_i=8
…
•  Total of 4000 of these little 8 bytes writes == 32,000 bytes.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Independent calls are many and small

•  Each process writes
one element of one
row, skips to next
row, write one
element, so on.

•  Each process issues
230,000 writes of 8
bytes each.

:
:
:

230,000 rows
:
:
:

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Debug slow parallel I/O speed (4)

% setenv H5FD_mpio_Debug ’rw’
% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=3688 size_i=8000
in H5FD_mpio_write mpi_off=11688 size_i=8000
in H5FD_mpio_write mpi_off=27688 size_i=8000
in H5FD_mpio_write mpi_off=19688 size_i=8000
in H5FD_mpio_write mpi_off=96 size_i=40
in H5FD_mpio_write mpi_off=136 size_i=544
in H5FD_mpio_write mpi_off=680 size_i=120
in H5FD_mpio_write mpi_off=800 size_i=272
…
Execution time: 0.011599 s.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Use collective mode or chunked storage

•  Collective I/O will
combine many small
independent calls
into few but bigger
calls

•  Chunks of columns
speeds up too

:
:
:

230,000 rows
:
:
:

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Collective vs. independent write

0

100

200

300

400

500

600

700

800

900

1000

0.25 0.5 1 1.88 2.29 2.75

Se
co

nd
s

to
 w

rit
e

Data size in MBs

Independent write
Collective write

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Collective I/O in HDF5

•  Set up using a Data Transfer Property List
(DXPL)

•  All processes must participate in the I/O call
(H5Dread/write) with a selection (which could
be a NULL selection)

•  Some cases where collective I/O is not used
even when the use asks for it:
•  Data conversion
•  Compressed Storage
•  Chunking Storage:

• When the chunk is not selected by a certain
number of processes

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Enabling Collective Parallel I/O with HDF5

/* Set up file access property list w/parallel I/O access */
fa_plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fa_plist_id, comm, info);

/* Create a new file collectively */
file_id = H5Fcreate(filename, H5F_ACC_TRUNC,

 H5P_DEFAULT, fa_plist_id);

/* <omitted data decomposition for brevity> */

/* Set up data transfer property list w/collective MPI-IO */
dx_plist_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(dx_plist_id, H5FD_MPIO_COLLECTIVE);

/* Write data elements to the dataset */
status = H5Dwrite(dset_id, H5T_NATIVE_INT,

 memspace, filespace, dx_plist_id, data);

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Collective I/O in HDF5

•  Can query Data Transfer Property List (DXPL)
after I/O for collective I/O status:
•  H5Pget_mpio_actual_io_mode

• Retrieves the type of I/O that HDF5 actually
performed on the last parallel I/O call

•  H5Pget_mpio_no_collective_cause
• Retrieves local and global causes that broke

collective I/O on the last parallel I/O call
•  H5Pget_mpio_actual_chunk_opt_mode

• Retrieves the type of chunk optimization that
HDF5 actually performed on the last parallel I/O
call. This is not necessarily the type of
optimization requested

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

EFFECT OF HDF5 STORAGE

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Contiguous storage

•  Metadata header separate from dataset data
•  Data stored in one contiguous block in HDF5 file

Application memory

Metadata cache
Dataset header

………….
Datatype

Dataspace
………….
Attributes

…

File

Dataset data

Dataset data

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

On a parallel file system

File Dataset data

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on
the stripe size and stripe count that the file was
created with.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Chunked storage

•  Data is stored in chunks of predefined size
•  Two-dimensional instance may be referred to as data

tiling
•  HDF5 library writes/reads the whole chunk

Contiguous Chunked

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Chunked storage (cont.)

•  Dataset data is divided into equally sized blocks (chunks).
•  Each chunk is stored separately as a contiguous block in

HDF5 file.

Application memory

Metadata cache
Dataset header

………….
Datatype

Dataspace
………….
Attributes

…

File

Dataset data

A D C B header Chunk
index

Chunk
index

A B C D

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

On a parallel file system

File A D C B

OST 1 OST 2 OST 3 OST 4

header Chunk
index

The file is striped over multiple OSTs depending on
the stripe size and stripe count that the file was
created with

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Which is better for performance?

•  It depends!!
•  Consider these selections:

•  If contiguous: 2 seeks
•  If chunked: 10 seeks

•  If contiguous: 16 seeks
•  If chunked: 4 seeks

Add to that striping over a Parallel File System, which
makes this problem very hard to solve!

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Chunking and hyperslab selection

•  When writing or reading, try to use hyperslab
selections that coincide with chunk boundaries.

•  If not possible, HDF5 provides some options

August 12, 2014 Extreme Scale Computing PHDF5

P2 P1 P3

www.hdfgroup.org

Parallel I/O on chunked datasets

•  Multiple options for performing I/O when
collective:
•  Operate on all chunks in one collective I/O

operation: “Linked chunk I/O”
•  Operate on each chunk collectively: “Multi-

chunk I/O”
•  Break collective I/O and perform I/O on each

chunk independently (also in “Multi-chunk I/O”
algorithm)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Linked chunk I/O

•  One MPI Collective I/O Call

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Multi-chunk I/O

•  Collective I/O per chunk
•  Determine for each chunk if enough processes

have a selection inside to do collective I/O
•  If not enough, use independent I/O

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Decision making

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

EFFECT OF HDF5 METADATA
CACHE

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 and Metadata

•  Metadata operations:
•  Creating/removing a dataset, group, attribute, etc…
•  Extending a dataset’s dimensions
•  Modifying group hierarchy
•  etc …

•  All operations that modify metadata are collective,
i.e., all processes have to call that operation:
•  If you have 10,000 processes running your

application, and one process needs to create a
dataset, ALL processes must call H5Dcreate to
create 1 dataset.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Space allocation

•  Allocating space at the file’s EOA is very simple in
serial HDF5 applications:
•  the EOA value begins at offset 0 in the file
•  when space is required, the EOA value is

incremented by the size of the block requested.
•  Space allocation using the EOA value in parallel

HDF5 applications can result in a race condition if
processes do not synchronize with each other:
•  multiple processes believe that they are the sole

owner of a range of bytes within the HDF5 file.
•  Solution: Make it Collective

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Example

•  Consider this case, where 2 processes want
to create a dataset each.

P1

H5Dcreate(D1) H5Dcreate(D2)

Each call has to allocate space in file to store
the dataset header.

Bytes 4 to 10 in the file are
free

Bytes 4 to 10 in the file are
free

Conflict!
August 12, 2014 Extreme Scale Computing PHDF5

P2

www.hdfgroup.org

Example

P1

H5Dcreate(D1) H5Dcreate(D1)
Allocate space in file to store the dataset header.
Bytes 4 to 10 in the file are free.

Create the dataset.

August 12, 2014

Extreme Scale Computing PHDF5

P2

H5Dcreate(D2) H5Dcreate(D2)

Bytes 11 to 17 in the file are free.
Create the dataset.

Allocate space in file to store the dataset header.

www.hdfgroup.org

Metadata cache

•  To handle synchronization issues, all HDF5
operations that could potentially modify the
metadata in an HDF5 file are required to be
collective
•  A list of those routines is available in the HDF5

reference manual (
http://www.hdfgroup.org/HDF5/doc/RM/
CollectiveCalls.html)

•  If those operations are not collective, how can
each process manage its Metadata Cache?
•  Do not have one, i.e. always access metadata

directly from disk
•  Disastrous for performance as metadata is usually

very small

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Managing the metadata cache

•  All operations that modify metadata in the HDF5
file are collective:
•  All processes will have the same dirty metadata

entries in their cache (i.e., metadata that is
inconsistent with what is on disk).

•  Processes are not required to have the same clean
metadata entries (i.e., metadata that is in sync with
what is on disk).

•  Internally, the metadata cache running on process
0 is responsible for managing changes to the
metadata in the HDF5 file.
•  All the other caches must retain dirty metadata until

the process 0 cache tells them that the metadata is
clean (i.e., on disk).

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Example

E1

E2

E3

E4

E1

E7

E8

E2

E4

E6

E1

E5

E12

E32

E1

E4

P0 P1 P2 P3

•  Metadata Cache is clean for all processes:

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Example

•  All processes call H5Gcreate that modifies
metadata entry E3 in the file:

E3

E1

E2

E4

E3

E1

E7

E8

E3

E4

E6

E1

E3

E12

E32

E1

August 12, 2014 Extreme Scale Computing PHDF5

P0 P1 P2 P3

www.hdfgroup.org

Example

•  All processes call H5Dcreate that modifies
metadata entry E2 in the file:

E3

E2

E1

E4

E3

E2

E1

E7

E3

E2

E4

E6

E3

E2

E12

E32

August 12, 2014 Extreme Scale Computing PHDF5

P0 P1 P2 P3

www.hdfgroup.org

Example

•  Process 0 calls H5Dopen on a dataset
accessing entry E5

E3

E2

E1

E7

E3

E2

E4

E6

E3

E2

E12

E32

E5
E3

E2

E1

August 12, 2014 Extreme Scale Computing PHDF5

P0 P1 P2 P3

www.hdfgroup.org

Flushing the cache

•  Initiated when:
•  The size of dirty entries in cache exceeds a

certain threshold
•  The user calls a flush

•  The actual flush of metadata entries to disk is
currently implemented in two ways:
•  Single Process (Process 0) write
•  Distributed write

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Single Process (Process 0) write

•  All processes enter a synchronization point.
•  Process 0 writes all the dirty entries to disk

while other processes wait and do nothing
•  Process 0 marks all the dirty entries as clean
•  Process 0 broadcasts the cleaned entries to all

processes that marks them as clean too

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Distributed write

•  All processes enter a synchronization point.
•  Process 0 broadcasts the metadata that needs

to be flushed to all processes
•  Using a distributed algorithm each determines

what part of the metadata cache entries it
needs to write, and writes them to disk
independently

•  All processes mark the flushed metadata as
clean

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PARALLEL TOOLS

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Parallel tools

•  h5perf
•  Performance measuring tool showing

I/O performance for different I/O APIs

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

h5perf

•  An I/O performance measurement tool
•  Tests 3 File I/O APIs:

•  POSIX I/O (open/write/read/close…)
•  MPI-I/O (MPI_File_{open,write,read,close})
•  HDF5 (H5Fopen/H5Dwrite/H5Dread/H5Fclose)

•  An indication of I/O speed upper limits

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Useful parallel HDF5 links

•  Parallel HDF information site
http://www.hdfgroup.org/HDF5/PHDF5/

•  Parallel HDF5 tutorial available at
http://www.hdfgroup.org/HDF5/Tutor/

•  HDF Help email address
help@hdfgroup.org

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

UPCOMING FEATURES IN
HDF5

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 Improvements in Progress

•  Multi-dataset read/write operations
•  Allows single collective operation on multiple

datasets
•  Similar to PnetCDF “write-combining” feature

•  H5Dmulti_read/write(<array of datasets,
selections, etc>)

•  Order of magnitude speedup (see next slides)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

H5Dwrite vs. H5Dwrite_multi

August 12, 2014 Extreme Scale Computing PHDF5

0
1
2
3
4
5
6
7
8
9

50 100 200 400 800

W
rit

e
tim

e
in

 s
ec

on
ds

Number of datasets

H5Dwrite
H5Dwrite_multi

Chunked floating-point datasets

Rank = 1
Dims = 200
Chunk size = 20

www.hdfgroup.org

H5Dwrite vs. H5Dwrite_multi

August 12, 2014 Extreme Scale Computing PHDF5

0

1

2

3

4

5

6

7

8

9

400 800 1600 3200 6400

W
rit

e
tim

e
in

 s
ec

on
ds

Number of datasets

H5Dwrite
H5Dwrite_multi

Rank = 1
Dims = 200

Contiguous floating-point datasets

www.hdfgroup.org

PHDF5 Improvements in Progress

•  Avoid file truncation
•  File format currently requires call to truncate

file, when closing
•  Expensive in parallel (MPI_File_set_size)
•  Change to file format will eliminate truncate call

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

PHDF5 Improvements in Progress

•  Collective Object Open
•  Currently, object open is independent
•  All processes perform I/O to read metadata

from file, resulting in I/O storm at file system
•  Change will allow a single process to read, then

broadcast metadata to other processes
•  Virtual Object Layer (VOL)
•  I/O Autotuning

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

VIRTUAL OBJECT LAYER
(VOL)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Virtual Object Layer (VOL)

•  Goal
- Provide an application with the HDF5 data model

and API, but allow different underlying storage
mechanisms

•  New layer below HDF5 API
-  Intercepts all API calls that can touch the data on

disk and routes them to a VOL plugin
•  Potential VOL plugins:
- Native HDF5 driver (writes to HDF5 file)
- Raw driver (maps groups to file system directories

and datasets to files in directories)
- Remote driver (the file exists on a remote machine)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Virtual Object Layer

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Why not use the VFL?

•  VFL is implemented below the HDF5
abstract model
- Deals with blocks of bytes in the storage

container
- Does not recognize HDF5 objects nor abstract

operations on those objects
•  VOL is layered right below the API layer to

capture the HDF5 model

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Sample API Function Implementation

hid_t	 H5Dcreate2	 (hid_t	 loc_id,	 const	 char	 *name,	
hid_t	 type_id,	 hid_t	 space_id,	 hid_t	 lcpl_id,	 hid_t	
dcpl_id,	 hid_t	 dapl_id)	 {	
/*	 Check	 arguments	 */	

	 …	
/*	 call	 corresponding	 VOL	 callback	 for	 H5Dcreate	 */	
	 dset_id	 =	 H5_VOL_create	 (TYPE_DATASET,	 …);	
/*	 	
	 Return	 result	 to	 user	 (yes	 the	 dataset	 is	 created,	
	 or	 no	 here	 is	 the	 error)	 	
*/	
	 return	 dset_id;	
}	

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

CONSIDERATIONS
Work in progress: VOL

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

VOL Plugin Selection

•  Use a pre-defined VOL plugin:
hid_t	 fapl	 =	 H5Pcreate(H5P_FILE_ACCESS);	
H5Pset_fapl_mds_vol(fapl,	 …);	
hid_t	 file	 =	 H5Fcreate("foo.h5",	 …,	 …,	 fapl);	
H5Pclose(fapl);	

•  Register user defined VOL plugin:
H5VOLregister	 (H5VOL_class_t	 *cls)	
H5VOLunregister	 (hid_t	 driver_id)	
H5Pget_plugin_info	 (hid_t	 plist_id)	

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Interchanging and Stacking Plugins

•  Interchanging VOL plugins
•  Should be a valid thing to do
•  User’s responsibility to ensure plugins coexist

•  Stacking plugins

•  Stacking should make sense.
•  For example, the first VOL plugin in a

stack could be a statistics plugin, that
does nothing but gather information on
what API calls are made and their
corresponding parameters.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Mirroring

•  Extension to stacking
•  HDF5 API calls are forwarded through a mirror plugin to

two or more VOL plugins

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Sample Plugins (I)

•  Different File Format plugins

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Sample Plugins: Metadata Server

August 12, 2014 Extreme Scale Computing PHDF5

MDS

Compute Nodes

H5F H5D H5A
H5O H5G H5L

Metadata File

VOL

Raw Data File

HDF5 container

Application processes

www.hdfgroup.org

Raw Plugin

•  The flexibility of the virtual object layer
provides developers with the option to
abandon the single file, binary format like the
native HDF5 implementation.

•  A “raw” file format could map HDF5 objects
(groups, datasets, etc …) to file system objects
(directories, files, etc …).

•  The entire set of raw file system objects
created would represent one HDF5 container.

•  Useful to the PLFS package (
http://institute.lanl.gov/plfs/)

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Remote Plugin

•  A remote VOL plugin would allow access to
files located remotely.

•  The plugin could have an HDF5 server module
located where the HDF5 file resides and
listens to incoming requests from a remote
process.

•  Use case: Remote visualization
•  Large, remote datasets are very expensive to

migrate to the local visualization system.
•  It would be faster to just enable in situ

visualization to remotely access the data using
the HDF5 API.

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Implementation

•  VOL Class
- Data structure containing general variables and

a collection of function pointers for HDF5 API
calls

•  Function Callbacks
- API routines that potentially touch data on disk
- H5F, H5D, H5A, H5O, H5G, H5L, and H5T

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Implementation

•  We will end up with a large set of function
callbacks:
•  Lump all the functions together into one data

structure OR
•  Have a general class that contains all common

functions, and then children of that class that
contain functions specific to certain HDF5
objects OR

•  For each object have a set of callbacks that are
specific to that object (This is design choice that
has been taken).

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Filters

•  Need to keep HDF5 filters in mind
•  Where is the filter applied, before or after the

VOL plugin?
- Logical guess now would be before, to avoid

having all plugins deal with filters

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Current status of VOL

•  ?

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

AUTOTUNING

Research Focus -

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning Background

•  Software Autotuning:
•  Employ empirical techniques to evaluate a set of

alternative mappings of computation kernels to an
architecture and select the mapping that obtains the
best performance.

•  Autotuning Categories:
•  Self-tuning library generators such as ATLAS, PhiPAC

and OSKI for linear algebra, etc.
•  Compiler-based autotuners that automatically generate

and search a set of alternative implementations of a
computation

•  Application-level autotuners that automate empirical
search across a set of parameter values proposed by
the application programmer

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

HDF5 Autotuning

•  Why?
•  Because the dominant I/O support request at

NERSC is poor I/O performance, many/most of
which can be solved by enabling Lustre
striping, or tuning another I/O parameter

•  Scientists shouldn’t have to figure this stuff out!
•  Two Areas of Focus:

•  Evaluate techniques for autotuning HPC
application I/O
•  File system, MPI, HDF5

•  Record and Replay HDF5 I/O operations
August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning HPC I/O

•  Goal: Avoid tuning each application to each
machine and file system
•  Create I/O autotuner library that can inject “optimal”

parameters for I/O operations on a given system
•  Using Darshan* tool to create wrappers for HDF5

calls
•  Application can be dynamically linked with I/O

autotuning library
•  No changes to application or HDF5 library

•  Using several HPC applications currently:
•  VPIC, GCRM, Vorpal

August 12, 2014 Extreme Scale Computing PHDF5

* - http://www.mcs.anl.gov/research/projects/darshan/

www.hdfgroup.org

Autotuning HPC I/O

•  Initial parameters of interest
•  File System (Lustre): stripe count, stripe unit
•  MPI-I/O: Collective buffer size, coll. buffer

nodes
•  HDF5: Alignment, sieve buffer size

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning HPC I/O

The$whole$space$visualized$

128&64&32&16&8&4&Stripe_Count&

Stripe_Size&(MB)& 32&16&8&4&2&1& 128&64&

32&16&8&4&2&1&cb_nodes&

cb_buffer_size&(MB)& 32&16&8&4&2&1& 128&64&

1048576&524288&alignment&

1&
MB&512&256&128&64&siv_buf_size&(KB)&

64&5242
88&1&1&1&4&

1&
MB&

1048
576&128&32&128&128&

…$ 23040$

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning HPC I/O

•  Autotuning Exploration/Generation Process:
•  Iterate over running application many times:

•  Intercept application’s I/O calls
•  Inject autotuning parameters
• Measure resulting performance

•  Analyze performance information from many
application runs to create configuration file,
with best parameters found for application/
machine/file system

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning HPC I/O

•  Using the I/O Autotuning Library:
•  Dynamically link with I/O autotuner library
•  I/O autotuner library automatically reads

parameters from config file created during
exploration process

•  I/O autotuner automatically injects autotuning
parameters as application operates

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning HPC I/O

August 12, 2014 Extreme Scale Computing PHDF5

Smallersetof$space$visualized$

128&64&32&16&8&4&Stripe_Count&

Stripe_Size&(MB)& 32&16&8&4&2&1& 128&64&

32&16&8&4&2&1&cb_nodes&

cb_buffer_size&(MB)& 32&16&8&4&2&1& 128&64&

1048576&524288&alignment&

1&
MB&512&256&128&64&siv_buf_size&(KB)&

64&5242
88&1&4&1&4&

512&5242
88&128&16&64&128&

…$ 72$

www.hdfgroup.org

Autotuning HPC I/O

0$

200$

400$

600$

800$

1000$

1200$

1$ 3$ 5$ 7$ 9$ 11$ 13$ 15$ 17$ 19$ 21$ 23$ 25$ 27$ 29$ 31$ 33$ 35$ 37$ 39$ 41$ 43$ 45$ 47$ 49$ 51$ 53$ 55$ 57$ 59$ 61$ 63$ 65$ 67$ 69$ 71$

Ti
m
e(
s)
&

Different&ConfiguraLons&

Result&of&Running&Our&Script&using&72&ConfiguraLon&files&on&32&Cores/1&Node&of&
Ranger&

CP_F_HDF_WRITE_TIME$

Time&=&540.08&s&
ConfiguraLon&#&=&68&

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning HPC I/O

Configura'on$#68$

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning in HDF5

•  “Auto-Tuning of Parallel IO Parameters for
HDF5 Applications”, Babak Behzad, et al,
poster @ SC12

•  "Taming Parallel I/O Complexity with Auto-
Tuning”, Babak Behzad, et al, SC13

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

Autotuning HPC I/O

•  Remaining research:
•  Determine “speed of light” for I/O on system

and use that to define “good enough”
performance

•  Entire space is too large to fully explore, we are
now evaluating genetic algorithm techniques to
help find “good enough” parameters

•  How to factor out “unlucky” exploration runs
•  Methods for avoiding overriding application

parameters with autotuned parameters

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

The HDF Group

Thank You!

Questions?

August 12, 2014 Extreme Scale Computing PHDF5

